Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem

نویسندگان

  • Egemen Kolemen
  • Pini Gurfil
چکیده

A new fully numerical method is presented which employs multiple Poincaré sections to find quasiperiodic orbits of the Restricted Three-Body Problem (RTBP). The main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior near chaotic regions that leads to full convergence for given family of quasiperiodic orbits and the minimal memory required to store these orbits. This method reduces the calculations required for searching two-dimensional invariant tori to a search for closed orbits, which are the intersection of the invariant tori with the Poincaré sections. Truncated Fourier series are employed to represent these closed orbits. The flow of the differential equation on the invariant tori is reduced to maps between the consecutive Poincaré maps. A Newton iteration scheme utilizes the invariance of the circles of the maps on these Poincaré sections in order to find the Fourier coefficients that define the circles to any given accuracy. A continuation procedure that uses the incremental behavior of the Fourier coefficients between close quasiperiodic orbits is utilized to extend the results from a single orbit to a family of orbits. Quasi-halo and Lissajous families of the Sun–Earth RTBP around the L2 libration point are obtained via this method. Results are compared with the existing literature. A numerical method to transform these orbits from the RTBP model to the real ephemeris model of the Solar System is introduced and applied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy

A new fully numerical method is presented which employs multiple Poincaré sections to find quasi-periodic orbits. The main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior near chaotic regions that leads to full convergence for given family of quasi-periodic orbits and the minimal memory required to store these orbits. This meth...

متن کامل

Chaos in the one-dimensional gravitational three-body problem.

We have investigated the appearance of chaos in the one-dimensional Newtonian gravitational three-body system (three masses on a line with -1/r pairwise potential). In the center of mass coordinates this system has two degrees of freedom and can be conveniently studied using Poincare sections. We have concentrated in particular on how the behavior changes when the relative masses of the three b...

متن کامل

A Variational Proof of Existence of Transit Orbits in the Restricted Three-body Problem

Because of the Jacobi integral, solutions of the planar, circular restricted three-body problem are confined to certain subsets of the plane called Hill’s regions. For certain values of the integral, one component of the Hill’s region consists of disklike regions around each of the two primary masses, connected by a tunnel near the collinear Lagrange point, L2. A transit orbit is a solution whi...

متن کامل

A New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic

In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...

متن کامل

Quasiperiodicity and Chaos Chaos and Quasiperiodicity

Title of dissertation: QUASIPERIODICITY AND CHAOS Suddhasattwa Das, Doctor of Philosophy, 2015 Dissertation directed by: Professor James A. Yorke Department of Mathematics In this work, we investigate a property called “multi-chaos” is which a chaotic set has densely many hyperbolic periodic points of unstable dimension k embedded in it, for at least 2 different values of k. We construct a fami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012